首页> 外文OA文献 >Automatic Localization of Bugs to Faulty Components in Large Scale Software Systems using Bayesian Classification
【2h】

Automatic Localization of Bugs to Faulty Components in Large Scale Software Systems using Bayesian Classification

机译:使用贝叶斯分类将大型软件系统中的错误自动定位到故障组件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We suggest a Bayesian approach to the problem of reducing bug turn-around time in large software development organizations. Our approach is to use classification to predict where bugs are located in components. This classification is a form of automatic fault localization (AFL) at the component level. The approach only relies on historical bug reports and does not require detailed analysis of source code or detailed test runs. Our approach addresses two problems identified in user studies of AFL tools. The first problem concerns the trust in which the user can put in the results of the tool. The second problem concerns understanding how the results were computed. The proposed model quantifies the uncertainty in its predictions and all estimated model parameters. Additionally, the output of the model explains why a result was suggested. We evaluate the approach on more than 50000 bugs.
机译:我们建议使用贝叶斯方法来减少大型软件开发组织中的错误周转时间。我们的方法是使用分类来预测错误在组件中的位置。这种分类是组件级别的自动故障定位(AFL)的一种形式。该方法仅依赖于历史错误报告,不需要对源代码进行详细分析或进行详细的测试运行。我们的方法解决了AFL工具用户研究中发现的两个问题。第一个问题涉及用户对工具结果的信任度。第二个问题涉及了解如何计算结果。提出的模型量化了其预测和所有估计的模型参数中的不确定性。另外,模型的输出解释了为什么建议结果。我们评估了超过50000个错误的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号